4. PROBABILITY AND THE
BINOMIAL THEOREM

84.1. Numbers of Arrangements

In how many ways can we arrange n things? If n = 3 and
the things are the letters A, B, C then the arrangements
are: ABC, ACB, BAC, BCA, CAB, CBA.

There are 3 letters that can occupy the first place, 2 that
can go in second place and 1 that can occupy the
remaining place. That s, 3 x 2 x 1 = 6. Note that we didn’t
have the list the arrangements and then count them. We
have a system for working out the number without a list.

Example 1: In how many ways can the 26 letters of the
alphabet be arranged?

Solution: The task of listing all the arrangements would
be formidable! Yet we can determine their number, on the
above principle, as 26 x 25 x 24 x ... x 3 x 2 x 1. Using
a calculator you can determine that this number is just
over 4 x 10%, which is 4 followed by 26 zeros. The fact
that the power of 10 is 26, the number of letters, is a bit
of a coincidence.

For every positive integer n we define n! (pronounced n
factorial)toben(n—1) ... 3.2.1.
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One group of people who are very familiar with factorials
are bell-ringers. Those are people who go up into a bell
tower in a cathedral and pull the ropes. By the way don’t
ever ask a bell-ringer “are you a campanologist?”. You
might be showing off your erudite learning, but you will
reveal that you aren’t a bell-ringer yourself. Bell-ringers
always call themselves ‘bell-ringers’.

If ever your hear a melody floating down from a bell-
tower you can be sure that it’s someone at a keyboard
operating the bells. Bell-ringing in the English tradition
consists of ringing patterns, not tunes. That’s not by
choice but because of the physics. While carillons,
operate with the bells being struck by hammers, a bell in
the English method of ringing has to rotate a complete 360
degrees when its rope is pulled. The sound comes two
thirds of the way round when the clapper, inside the bell,
catches up with the bell itself.

As a consequence it takes about 2 seconds before the same
bell can be sounded again. Imagine trying to play

“Twink.....le.....twink.....le.....little.....star” on a set of
bells!

The fundamental principle of English bell-ringing is that
each bell rings in a certain order. Then they all ring in a
different order, and so on. And the convention is that no
arrangement is to be repeated. There’s no practical, or
even aesthetic, reason for this. If you listened to a peal of
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bells, you’re hardly likely to notice that the same
arrangement is repeated half an hour later. But that’s how
it’s always been done.

So, ringing on 8 bells there would be 8! different
arrangements. To go through all of these arrangements
would take 24 hours! No-one ever does this. But there’s a
convention that the tenor bell, the largest, always rings
last each time. This acts as a sort of punctuation mark after
each of the other 7 have rung. So a full peal of bells
consists of ringing the other 7 bells in all 7! ways. As
every bell-ringer knows, 7! = 5040 and a full peal takes
about 3 hours, which is quite a feat!. | have only ever rung
a quarter peal, which takes about 45 minutes.

How does one guarantee no repetitions? The answer is
that there are certain methods. each involving a few
simple rules, that can be proved on pencil and paper to
contain no repetitions

84.2. Numbers of Choices

How many ways are there of choosing 2 things out of 5?
If we have 5 letters A, B, C, D, E, BD will be one such
choice. The number depends on whether we consider BD
and DB as the same choice or different choices.

If we want the choices in a specific order then they are:
AB, AC, AD, AE, BA, BC, BD, BE, CA, CB, CD, CE,
DA, DB, DC, DE, EA, EB, EC, ED.
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There are altogether 20 choices. For each of the 5
possibilities for the first letter, there are 4 choices for the
second.

But if the order of the letters doesn’t matter we have only
half of these:

AB, AC, AD, AE, BC, BD, BE, CD, CE, DE.
We divide by 2, because each choice will appear twice in
the first list.

Theorem 1: The number of ways of choosing r things
fromn is:
nin —1)(n - 2) ... (n—r + 1) if the order
matters and

nn-1)(n-2)..(n—-r+1)
rr—-1)(r-2)..321
does not matter.
Proof: If the order matters there are n possibilities for the
first choice.
For each of these there are n—1 possibilities for the second
choice, making n(n—1) possibilities for the first two
choices.
For each of these there are n—2 possibilities for the third
choice, making n(n—1)(n—2) possibilities for the first three
choices.
And so on. (A more formal proof would prove it by
induction.) %©

if the order
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If the choice doesn’t matter, each choice of r things can
be arranged in r(r-1)(r-2) ... 3.2.1 ways and so we must
divide by this number. We denote this by r! and call it
factorial r.

Example 1: 41 =4.3.2.1 = 24.

We denote the number of choices of r things from n,
where the order matters, as "Pr. Where the order doesn’t
matter we use the symbol "C,, or more usually by the

n
symbol (rj . We can restate Theorem 1 as follows.

Theorem 1 (again):

The number of ways of choosing r things from n, if order
: n!

matters, is: "P, = PR

The number of ways of choosing r things from n, if order
doesn’t matter, is:
(n) __n
r)ri(n-r)!"

One way of looking at choosing r things from n is to think
of it as separating the n things into two subsets, those that
are accepted and those that are rejected.

Example 1: You have 24 students and you have 2 sports
activities — tennis and running. As there are only 2 courts
available you have to choose 8 students to play tennis and
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the rest will have to go running. In how many ways can
you make such a choice?

Solution: We have to separate the
24 students into two groups — the
tennis group and the running
group.

It doesn’t
matter  which
group we choose first, as long as there
are 8 in the tennis group and 16 in the
running group. We could choose 8
students from the 24 to play tennis.
The rest will run.

24 24.23.22.21.20.19.18.17 :
There are (8) = 8.7.6.5 4 3 2 1 Possible
choices.
: 3.23.11.19.3.17
If we cancel as far as possible we get 1 =
735471.

Now we could have chosen the runners first, and the rest
will play tennis.

(24) _24.23.22.21.20.19.18.17.16.15.14.13.
There are |16) =761514.13.12.11.10.9. 8. 7. 6. 5.

12.11.10.9 : :
2.3 21 possible choices.

Now notice that we have the factor
16.15.14.13.12.11.109 in both the numerator and
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| _ ’ | th 24.23.22.21.20.
enominator. It we cancel these we get g™~ ("¢ 4

19.18.17 bef
3 o 1 as before.

n n
Theorem 2: (r) = (n B rj forall r, n.

Proof: The LHS is the number of ways of choosing r
things and rejecting the other n — r while the RHS is the
number of ways of choosing the n — r things and rejecting
the rest. Both involve dividing the n things into a subset
of size r and a subset of size n —r. %©

More generally, if we have n things and we wish to
separate them into k subsets of sizes
ri, Mo, ..., I, Where ry + r + ... + rx = n, the number of

1
[ - This is called a

ways of doing this is: m

multinomial coefficient.

: o n! _ (nj
The special case, where k =2, is m-n! ~\r called a

binomial coefficient (for reasons that will become clear
later).

Theorem 3: For all n, r:

@) @ - (nir];
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@ (7=
@) +[1) +[) ++{r) =2

Proof: We’ve already proved (1).

(2) Suppose we have to choose r things fromn + 1, say r
numbers from {0, 1, 2, ..., n}.

Such a choice might include 0 or exclude 0.

How many exclude 0? In this case we have to choose all
r of them from {1, 2, ..., n} and the number of such

.. (n
choices is (rj :
How many include 1? In this case we have the remaining
r — 1 things to choose from

n
{1, 2, ..., n} and the number of such choices is (r B 1) .

Every choice must either include or exclude 0 (and no

choice can do both) so the total number of choices is @

+LEJ'

(3) Suppose we have to choose a subset from {1, 2, ...,
n}. The size of the subset can range from 0 (by choosing
nothing) to n (by choosing everything). The number of
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) ... (n
choices, where the sizeisr, is (r) . Hence the total number

of choices is @ +® +@ - +@

But in choosing a subset from {1, 2, ..., n} there are 2
possibilities for each of these numbers — either it is in the
subset or it is not. So the total number of subsets is 2".
)

84.3. Pascal’s Triangle
There is a rather interesting way to list the binomial
coefficients, called Pascal’s Triangle. Start with 1 on the

1
top. Underneath write ‘1 1°. So far we have 11 Now

write 1’s diagonally to the left and the right as follows.
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Under each pair of adjacent numbers on each row, write
their sum:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

The n’th row of this triangle give the binomial
iiens). (1], (3], . o
coefficients (], 1)+ 19> -5 () -

84.4. The Binomial Theorem

It would be possible to expand (a + b)® by putting (a + b)?
= a? + 2ab + b? and then expanding (a? + 2ab + b?)(a? +
2ab + b?) and finally multiplying the answer by a2 + 2ab
+ b2 again. But this would be very laborious.

Imagine expanding (a + b)(a + b)(a + b)(a + b)(a + b).
Each term will consist of 5 factors, one chosen from each
of these factors. Sometimes we may choose an ‘a’, and
sometimes a ‘b’. Suppose we choose ‘a’ from the first
factor, ‘b’ from the second and third, ‘a’ from the fourth
factor and ‘b’ from the last factor. This will give the term
abbab, which simplifies to a?b?.
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There will be other terms that simplify to ab®. How
many? As many ways as there are of choosing 2 factors,

from the 5, where the choice is an ‘a’. There are (gj =10

such choices. So altogether the coefficient of a2b® will be
10.

Now the individual terms in this expansion will all have
the form a'b®>" corresponding to a choice of r a’s and

5 :
(n —r) b’s. There will be (r) such terms which can be

: 5 :
combined as (r) a'b"™". Finally, r can range from 0 to 5.

When r = 0 we choose no a’s and all b’s. When r = n we
choose all a’s and no b’s. There will be just one choice
for each, so the coefficients of a®> and b® will each be 1.

5 5 5 5
So(a+b)p=a’+ [1) a'b + @ a’h? + @ a’h® + @ ab* +
b°. Evaluating the binomial coefficients this becomes (a
+ b)® = a® + 5a*b + 10a%p? + 10a%b® + 5ab* + b°.

Notice that these coefficients can be read off from the 5%
row of Pascal’s Triangle.
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Theorem 4 (BINOMIAL THEOREM): For all real
numbers a, b and all positive integers n:

(@a+br=a" + @ a" b + @ a2+ ... @ a™'h" + ...

n
n-1 n
+ (n _1] ab"™ +b",

Proof: The terms in a™'b" will result from n — r choices
of ‘a’ and r choices of ‘b’ from
(a+b)"

There will be @ such choices and hence the coefficient
of a""b" is @ %O

Notice the pattern of the RHS. The powers of a start at a"
and lose a factor of a at each step, while the powers of b
pick up an extra factor of b at each step. The coefficient

. (n ) ) n
IS (rj where r is the number of b’s. But since (r] =

n .
(n B rj you can use the number of a’s instead.

Example 2: Expand (a + b)2.
Solution:

(@a+b)’=a° + @ a’b + @ a’h? + @ a’h’ + [Z) a‘b* +

@ ah® + @ a’h® + @ ab’ + b8,
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= a® + 8a’b + 28a°h? + 56a°b® + 70a*b* + 56a°h° + 28a2h°®
+ 8ab’ + b8,

8§4.5. Binomial Probability

If you toss 8 coins what is the chance
of getting 4 heads and 4 tails? For each
toss the chance is % of it being a head
and %2 of being a tail (assuming the
coins are fair). If we are fussed about
the order in which the heads and tails
occur then the probability of HTHHTHTT, for example,
1
= 256

heads and 4 tails than this particular sequence. Each of the

1
will be 75 58 = But there are more ways of getting 4

4 heads will come from 4 of the 8 tosses. There are @ =

will be one sequence that consists of 4 heads and 4 tails.

. - 1
Each such sequence will have a probability of 256+ SO the

required probability is % , Which is about 0.273.

Now consider the situation where you carry out an
experiment, called a trial, and you know the probability
of an event. Then the binomial theorem can give the
distribution of any number of occurrences of that event in
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n trials. In the case of coin tosses the trials are the tosses
and the probability of heads is %% .

In the following theorem the trials are assumed to be
independent. This means that the outcome of each trial
does not depend on the outcomes of the remaining trials.
For coin tosses this would certainly be true. For the sex of
births, it’s not exactly true since boys or girls tend to run
in some families. But it’s still close enough to the truth to
give good approximations of probabilities.

Theorem 5: If an event has a probability of p in a single
trial, and g = 1 — p, then the probability of getting the

. : : ... (n
event r times with n independent trials is (r) p'gt.

Proof: The probability of a particular sequence of
outcomes, where the event occurs r times and not the

- : . n
remaining n — r times is p'q"™". There are (rj such
sequences with the event occurring r times so the required

)
probability is [rj prgt'. YO

Example 3: Give the approximate probabilities for
differing numbers of boys for a family with 10 children
(assuming that the sex of the babies is independent for
each birth).
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Solution:

# boys 0 1 2 3 4 5
proby 1 10 45 120 | 210 | 252
1024 | 1024 | 1024 | 1024 | 1024 | 1024

approx | 0.001 | 0.010]0.044 | 0.117 | 0.205 | 0.246

#boys | 6 7 8 9 | 10
proby | 210 [120 |45 | 10 |_1
1024 | 1024 | 1024 |1024 | 1024

approx | 0.205 | 0.117 | 0.044 | 0.010 | 0.001

Example 4: Find the probability of throwing at least two
sixes with 4 dice.
Solution: We assume that the dice are fair, so that the

1
probability of a six is 6
1 5
Sop—6 andq-6.

age . H 1 4 1 2 5 ?
The probability of getting exactly 2 sixes is [2) (6} (6]

25
- 6.1296 ~ 0.116.
T - . . (4 (1\3(5
The probability of getting exactly 3 sixes is @ @ @ =
5

-y - 1 1 1
The probability of getting exactly 4 sixes is (gj = 1296
~ 0.001.
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Adding these, the probability of at least 2 sixes is
approximately 0.132..

EXERCISES FOR CHAPTER 4

Exercise 1: On my bookshelves | have the seven novels
by the Bronté sisters. | wish to select three of them to
take away on holiday. In how many ways can | do this?

Exercise 2: Seven athletes run a 100 metres race. The
result that’s recorded consists of the first place, second
place and third place. How many different results are
possible?

Exercise 3: Seven houses are in a row in a suburban
street. Three houses have been burgled. Assuming that
the break-ins are random, what is the probability that the
three burgled houses will be adjacent.

Exercise 4: Expand (1 + x)” by the Binomial Theorem.

Exercise 5: Expand (2a — 3b)* by the Binomial
Theorem.

Exercise 6: What is the probability of throwing 10 coins
and getting exactly 5 heads?

Exercise 7: What is the probability of throwing 7 coins
and getting exactly 3 heads?
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Exercise 8: A certain species of dog produces more
female pups than males, with the probability of a given
pup being female being 2/3. What is the probability that,
in a litter of 8 pups, there are more males than females?

SOLUTIONS FOR CHAPTER 4

Exercise 1: The order of the books | take does not

7\ 7.65
matter, so there are @ =371 " 35.

Exercise 2: Here the order does matter, so the number of
different results = 7.6.5 = 210.

: 7\ 7.65
Exercise 3: There are [?J =371 " 35 ways of

selecting three houses. If the choice is random there is a

- 1 :
probability of 35 of each selection. Of these there are 5

choices in which the houses are adjacent. (If the houses
are represented by the letters A — G then the adjacent
choices are ABC, BCD, CDE, DEF, EFG.) Hence the
probability of a random choice selecting three adjacent

NI
C OICBSISBS =7
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- 7 7 7
Exercise 4: (L +Xx)"=1+7x + (2) Xt + (3) X+ @ X'+

(Q X° + 7x8 + X
=1+ 7x+ 21x% + 35x3 + 35x* +
21x° + 7x8 + x'.

Exercise 5: (2a — 3b)* = (2a)* — 4(2a)3(3b) + 6(2a)?(3b)?
_ 4(22)(3b)? + (3b)*

= 16a* - 96a%b + 216a%b? -
216ab® + 81b*.

o oo (10} 0252 63
Exercise 6: The probability is (5) 127 =700 =256 *
0.25.

o Lo (T (D)7 35
Exercise 7: The probability is @ @ =%5g ~ 0.137.

Exercise 8: Let P(k) denote the probability of getting k
males.

Then P(K) = @ @ ¢

The probability of getting more males than females is

P(5) + P(6) + P(7) + P(8) = @ @ T+ @ @ e @ @ 7

“[ls)"
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56 28 8 1
=243 * 729 T 2187 T 6561
1512 +252+24+1
= 6561

1789

= 6561 ~ 0.273.
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