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4. PROBABILITY AND THE 

BINOMIAL THEOREM 
 

§4.1. Numbers of Arrangements 
In how many ways can we arrange n things? If n = 3 and 

the things are the letters A, B, C then the arrangements 

are: ABC, ACB, BAC, BCA, CAB, CBA. 

 

There are 3 letters that can occupy the first place, 2 that 

can go in second place and 1 that can occupy the 

remaining place. That is, 3  2  1 = 6. Note that we didn’t 

have the list the arrangements and then count them. We 

have a system for working out the number without a list. 

 

Example 1: In how many ways can the 26 letters of the 

alphabet be arranged? 

Solution: The task of listing all the arrangements would 

be formidable! Yet we can determine their number, on the 

above principle, as 26  25  24  …  3  2  1. Using 

a calculator you can determine that this number is just 

over 4  1026, which is 4 followed by 26 zeros. The fact 

that the power of 10 is 26, the number of letters, is a bit 

of a coincidence. 

 

For every positive integer n we define n! (pronounced n 

factorial) to be n(n − 1) … 3.2.1. 
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One group of people who are very familiar with factorials 

are bell-ringers. Those are people who go up into a bell 

tower in a cathedral and pull the ropes. By the way don’t 

ever ask a bell-ringer “are you a campanologist?”. You 

might be showing off your erudite learning, but you will 

reveal that you aren’t a bell-ringer yourself. Bell-ringers 

always call themselves ‘bell-ringers’. 

 

If ever your hear a melody floating down from a bell-

tower you can be sure that it’s someone at a keyboard 

operating the bells. Bell-ringing in the English tradition 

consists of ringing patterns, not tunes. That’s not by 

choice but because of the physics. While carillons, 

operate with the bells being struck by hammers, a bell in 

the English method of ringing has to rotate a complete 360 

degrees when its rope is pulled. The sound comes two 

thirds of the way round when the clapper, inside the bell, 

catches up with the bell itself. 

 

As a consequence it takes about 2 seconds before the same 

bell can be sounded again. Imagine trying to play 

“Twink…..le…..twink…..le…..little…..star”  on a set of 

bells! 

 

The fundamental principle of English bell-ringing is that 

each bell rings in a certain order. Then they all ring in a 

different order, and so on. And the convention is that no 

arrangement is to be repeated. There’s no practical, or 

even aesthetic, reason for this. If you listened to a peal of 
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bells, you’re hardly likely to notice that the same 

arrangement is repeated half an hour later. But that’s how 

it’s always been done. 

 

So, ringing on 8 bells there would be 8! different 

arrangements. To go through all of these arrangements 

would take 24 hours! No-one ever does this. But there’s a 

convention that the tenor bell, the largest, always rings 

last each time. This acts as a sort of punctuation mark after 

each of the other 7 have rung. So a full peal of bells 

consists of ringing the other 7 bells in all 7! ways. As 

every bell-ringer knows, 7! = 5040 and a full peal takes 

about 3 hours, which is quite a feat!. I have only ever rung 

a quarter peal, which takes about 45 minutes. 

 

How does one guarantee no repetitions? The answer is 

that there are certain methods. each involving a few 

simple rules, that can be proved on pencil and paper to 

contain no repetitions  

 

§4.2. Numbers of Choices 
How many ways are there of choosing 2 things out of 5? 

If we have 5 letters A, B, C, D, E, BD will be one such 

choice. The number depends on whether we consider BD 

and DB as the same choice or different choices. 

 

If we want the choices in a specific order then they are: 

AB, AC, AD, AE, BA, BC, BD, BE, CA, CB, CD, CE, 

DA, DB, DC, DE, EA, EB, EC, ED. 
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There are altogether 20 choices. For each of the 5 

possibilities for the first letter, there are 4 choices for the 

second. 

 

But if the order of the letters doesn’t matter we have only 

half of these: 

AB, AC, AD, AE, BC, BD, BE, CD, CE, DE. 

We divide by 2, because each choice will appear twice in 

the first list. 

 

Theorem 1: The number of ways of choosing r things 

from n is: 

n(n − 1)(n − 2) … (n − r + 1) if the order 

matters and 

 

n(n − 1)(n − 2) ... (n − r + 1)

r(r − 1)(r − 2) ... 3.2.1
  if the order 

does not matter. 

Proof: If the order matters there are n possibilities for the 

first choice. 

For each of these there are n−1 possibilities for the second 

choice, making n(n−1) possibilities for the first two 

choices. 

For each of these there are n−2 possibilities for the third 

choice, making n(n−1)(n−2) possibilities for the first three 

choices. 

And so on. (A more formal proof would prove it by 

induction.) ☺ 
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If the choice doesn’t matter, each choice of r things can 

be arranged in r(r−1)(r−2) … 3.2.1 ways and so we must 

divide by this number. We denote this by r! and call it 

factorial r. 

 

Example 1: 4! = 4.3.2.1 = 24. 

 

We denote the number of choices of r things from n, 

where the order matters, as nPr. Where the order doesn’t 

matter we use the symbol nCr, or more usually by the 

symbol 






n

r
 . We can restate Theorem 1 as follows. 

 

Theorem 1 (again): 

The number of ways of choosing r things from n, if order 

matters, is: nPr = 
n!

r!
 . 

The number of ways of choosing r things from n, if order 

doesn’t matter, is: 

 







n

r
  = 

n!

r!(n −r)!
 . 

 

One way of looking at choosing r things from n is to think 

of it as separating the n things into two subsets, those that 

are accepted and those that are rejected. 

Example 1: You have 24 students and you have 2 sports 

activities – tennis and running. As there are only 2 courts 

available you have to choose 8 students to play tennis and 
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the rest will have to go running. In how many ways can 

you make such a choice? 

Solution: We have to separate the 

24 students into two groups – the 

tennis group and the running 

group. 

 It doesn’t 

matter which 

group we choose first, as long as there 

are 8 in the tennis group and 16 in the 

running group. We could choose 8 

students from the 24 to play tennis. 

The rest will run. 

There are 






24

8
  = 

24.

8.

23.

7.

22.

6.

21.

5.

20.

4.

19.

3.

18.

2.

17

1
 possible 

choices. 

If we cancel as far as possible we get 
3.23.11.19.3.17

1
  = 

735471. 

Now we could have chosen the runners first, and the rest 

will play tennis. 

There are  






24

16
  = 

24.

16.

23.

15.

22.

14.

21.

13.

20.

12.

19.

11.

18.

10.

17.

9.

16.

8.

15.

7.

14.

6.

13.

5.

12.

4.

11.

3.

10.

2.

9

1
 possible choices. 

Now notice that we have the factor 

16.15.14.13.12.11.10.9 in both the numerator and 
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denominator. If we cancel these we get 
24.

8.

23.

7.

22.

6.

21.

5.

20.

4.

19.

3.

18.

2.

17

1
 as before. 

 

Theorem 2: 






n

r
 = 







n

n − r
  for all r, n. 

Proof: The LHS is the number of ways of choosing r 

things and rejecting the other n − r while the RHS is the 

number of ways of choosing the n − r things and rejecting 

the rest.  Both involve dividing the n things into a subset 

of size r and a subset of size n − r. ☺ 

 

More generally, if we have n things and we wish to 

separate them into k subsets of sizes 

r1, r2, …, rk, where r1 + r2 + … + rk = n, the number of 

ways of doing this is: 
n!

r1! r2! ... rk!
 . This is called a 

multinomial coefficient. 

 

The special case, where k = 2, is 
n!

r! (n − r)!
  = 







n

r
 called a 

binomial coefficient (for reasons that will become clear 

later). 

 

Theorem 3: For all n, r: 

(1)  






n

r
  =  







n

n − r
 ; 
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(2)  






n + 1

r
  = 







n

r
  + 







n

r − 1
 ; 

(3) 






n

0
  + 







n

1
  + 







n

2
  + … + 







n

n
  = 2n. 

Proof: We’ve already proved (1). 

 

(2) Suppose we have to choose r things from n + 1, say r 

numbers from {0, 1, 2, …, n}. 

Such a choice might include 0 or exclude 0. 

How many exclude 0? In this case we have to choose all 

r of them from {1, 2, …, n} and the number of such 

choices is 






n

r
 . 

How many include 1? In this case we have the remaining 

r − 1 things to choose from 

{1, 2, …, n} and the number of such choices is 






n

r − 1
 . 

Every choice must either include or exclude 0 (and no 

choice can do both) so the total number of choices is 






n

r
  

+ 






n

r − 1
 . 

 

(3) Suppose we have to choose a subset from {1, 2, …, 

n}. The size of the subset can range from 0 (by choosing 

nothing) to n (by choosing everything). The number of 
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choices, where the size is r, is 






n

r
 . Hence the total number 

of choices is 






n

0
  + 







n

1
  + 







n

2
  + … + 







n

n
 . 

But in choosing a subset from {1, 2, …, n} there are 2 

possibilities for each of these numbers – either it is in the 

subset or it is not. So the total number of subsets is 2n. 
☺ 

 

§4.3. Pascal’s Triangle 
There is a rather interesting way to list the binomial 

coefficients, called Pascal’s Triangle. Start with 1 on the 

top. Underneath write ‘1   1’. So far we have  
1

1   1
 . Now 

write 1’s diagonally to the left and the right as follows. 

 

          1           

         1  1          

        1    1         

       1      1        

      1        1       

     1          1      

    1            1     

   1              1    

  1                1   

 1                  1  

1                    1 
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Under each pair of adjacent numbers on each row, write 

their sum: 
       1        

      1  1       

     1  2  1      

    1  3  3  1     

   1  4  6  4  1    

  1  5  10  10  5  1   

 1  6  15  20  15  6  1  

1  7  21  35  35  21  7  1 

 

The n’th row of this triangle give the binomial 

coefficients 






n

0
 , 






n

1
 , 






n

2
 , …, 







n

n
 . 

 

§4.4. The Binomial Theorem 
It would be possible to expand (a + b)6 by putting (a + b)2 

= a2 + 2ab + b2 and then expanding (a2 + 2ab + b2)(a2 + 

2ab + b2) and finally multiplying the answer by a2 + 2ab 

+ b2 again. But this would be very laborious. 

 

Imagine expanding (a + b)(a + b)(a + b)(a + b)(a + b). 

Each term will consist of 5 factors, one chosen from each 

of these factors. Sometimes we may choose an ‘a’, and 

sometimes a ‘b’. Suppose we choose ‘a’ from the first 

factor, ‘b’ from the second and third, ‘a’ from the fourth 

factor and ‘b’ from the last factor. This will give the term 

abbab, which simplifies to a2b3. 
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There will be other terms that simplify to a2b3. How 

many? As many ways as there are of choosing 2 factors, 

from the 5, where the choice is an ‘a’. There are 






5

2
 = 10 

such choices. So altogether the coefficient of a2b3 will be 

10. 

 

Now the individual terms in this expansion will all have 

the form arb5−r corresponding to a choice of r  a’s and 

(n − r)  b’s. There will be 






5

r
  such terms which can be 

combined as 






5

r
 arbn−r. Finally, r can range from 0 to 5. 

When r = 0 we choose no a’s and all b’s. When r = n we 

choose all a’s and no b’s. There will be just one choice 

for each, so the coefficients of a5 and b5 will each be 1. 

 

So (a + b)5 = a5 + 






5

1
 a4b + 







5

2
 a3b2 + 







5

3
 a2b3 + 







5

4
 ab4 + 

b5. Evaluating the binomial coefficients this becomes (a 

+ b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5. 

 

Notice that these coefficients can be read off from the 5th 

row of Pascal’s Triangle. 
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Theorem 4 (BINOMIAL THEOREM): For all real 

numbers a, b and all positive integers n: 

(a + b)n = an  + 






n

1
 an−1b + 







n

2
 an−2b2 + … 







n

r
 an−rbr  + … 

+ 






n

n −1
 abn−1 + bn. 

Proof: The terms in an−rbr will result from n − r choices 

of ‘a’ and r choices of ‘b’ from 

(a + b)n. 

There will be 






n

r
  such choices and hence the coefficient 

of an−rbr is 






n

r
 . ☺ 

 

Notice the pattern of the RHS. The powers of a start at an 

and lose a factor of a at each step, while the powers of b 

pick up an extra factor of b at each step. The coefficient 

is 






n

r
  where r is the number of b’s. But since 







n

r
  = 







n

n − r
  you can use the number of a’s instead. 

 

Example 2: Expand (a + b)8. 

Solution: 

(a + b)8 =  a8  + 






8

1
 a7b + 







8

2
 a6b2 + 







8

3
 a5b3 + 







8

4
 a4b4  +  







8

5
 a3b5 +  







8

6
 a2b6 + 







8

7
 ab7 + b8. 
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= a8 + 8a7b + 28a6b2 + 56a5b3 + 70a4b4 + 56a3b5 + 28a2b6 

+ 8ab7 + b8. 

 

§4.5. Binomial Probability 
If you toss 8 coins what is the chance 

of getting 4 heads and 4 tails? For each 

toss the chance is ½ of it being a head 

and ½ of being a tail (assuming the 

coins are fair). If we are fussed about 

the order in which the heads and tails 

occur then the probability of HTHHTHTT, for example, 

will be 
1

28  = 
1

256
 . But there are more ways of getting 4 

heads and 4 tails than this particular sequence. Each of the 

4 heads will come from 4 of the 8 tosses. There are 






8

4
  = 

8.

4.
 
7.

3.
 
6.

2.
 
5.

1.
  = 70 such choices and for each of these there 

will be one sequence that consists of 4 heads and 4 tails. 

Each such sequence will have a probability of 
1

256
 , so the 

required probability is 
70

256
 , which is about 0.273. 

 

Now consider the situation where you carry out an 

experiment, called a trial, and you know the probability 

of an event. Then the binomial theorem can give the 

distribution of any number of occurrences of that event in 
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n trials. In the case of coin tosses the trials are the tosses 

and the probability of heads is ½ . 

 

In the following theorem the trials are assumed to be 

independent. This means that the outcome of each trial 

does not depend on the outcomes of the remaining trials. 

For coin tosses this would certainly be true. For the sex of 

births, it’s not exactly true since boys or girls tend to run 

in some families. But it’s still close enough to the truth to 

give good approximations of probabilities. 

  

Theorem 5: If an event has a probability of p in a single 

trial, and q = 1 − p, then the probability of getting the 

event r times with n independent trials is 






n

r
 prqn−r. 

Proof: The probability of a particular sequence of 

outcomes, where the event occurs r times and not the 

remaining n − r times is prqn−r. There are 






n

r
  such 

sequences with the event occurring r times so the required 

probability is 






n

r
 prqn−r. ☺ 

 

Example 3: Give the approximate probabilities for 

differing numbers of boys for a family with 10 children 

(assuming that the sex of the babies is independent for 

each birth). 
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Solution: 

# boys 0 1 2 3 4 5 

proby 1

1024
  

10

1024
  

45

1024
  

120

1024
  

210

1024
  

252

1024
  

approx 0.001 0.010 0.044 0.117 0.205 0.246 

 

# boys 6 7 8 9 10 

proby 210

1024
  

120

1024
  

45

1024
  

10

1024
  

1

1024
  

approx 0.205 0.117 0.044 0.010 0.001 

 

Example 4: Find the probability of throwing at least two 

sixes with 4 dice. 

Solution: We assume that the dice are fair, so that the 

probability of a six is 
1

6
 . 

So p = 
1

6
  and q = 

5

6
 . 

The probability of getting exactly 2 sixes is 






4

2
 






1

6
 
2

 







5

6
 
2

 

= 6.
25

1296
   0.116. 

The probability of getting exactly 3 sixes is 






4

3
 






1

6
 
3

 







5

6
  = 

4.
5

1296
   0.015. 

The probability of getting exactly 4 sixes is 






1

6
 
4

  = 
1

1296
  

 0.001. 
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Adding these, the probability of at least 2 sixes is 

approximately 0.132.. 

 

EXERCISES FOR CHAPTER 4 
 

Exercise 1: On my bookshelves I have the seven novels 

by the Brontë sisters. I wish to select three of them to 

take away on holiday. In how many ways can I do this? 

 

Exercise 2: Seven athletes run a 100 metres race. The 

result that’s recorded consists of the first place, second 

place and third place. How many different results are 

possible? 

 

Exercise 3: Seven houses are in a row in a suburban 

street. Three houses have been burgled. Assuming that 

the break-ins are random, what is the probability that the 

three burgled houses will be adjacent. 

 

Exercise 4: Expand (1 + x)7 by the Binomial Theorem. 

 

Exercise 5: Expand (2a − 3b)4 by the Binomial 

Theorem. 

 

Exercise 6: What is the probability of throwing 10 coins 

and getting exactly 5 heads? 

 

Exercise 7:  What is the probability of throwing 7 coins 

and getting exactly 3 heads? 



 105 

Exercise 8: A certain species of dog produces more 

female pups than males, with the probability of a given 

pup being female being 2/3. What is the probability that, 

in a litter of 8 pups, there are more males than females? 

 

SOLUTIONS FOR CHAPTER 4 
Exercise 1: The order of the books I take does not 

matter, so there are 






7

3
  = 

7.6.5

3.2.1
  = 35. 

 

Exercise 2: Here the order does matter, so the number of 

different results = 7.6.5 = 210. 

 

Exercise 3:  There are 






7

3
  = 

7.6.5

3.2.1
  = 35 ways of 

selecting three houses. If the choice is random there is a 

probability of 
1

35
 of each selection. Of these there are 5 

choices in which the houses are adjacent.  (If the houses 

are represented by the letters A – G then the adjacent 

choices are ABC, BCD, CDE, DEF, EFG.)  Hence the 

probability of a random choice selecting three adjacent 

choices is 
5

35
  = 

1

7
 . 
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Exercise 4: (1 + x)7 = 1 + 7x + 






7

2
 x2 + 







7

3
 x3 + 







7

4
 x4 + 







7

5
 x5 + 7x6 + x7 

                                 = 1 + 7x + 21x2 + 35x3 + 35x4 + 

21x5 + 7x6 + x7. 

 

Exercise 5: (2a − 3b)4 = (2a)4 − 4(2a)3(3b) + 6(2a)2(3b)2 

− 4(2a)(3b)3 + (3b)4 

                                    = 16a4 − 96a3b + 216a2b2 − 

216ab3 + 81b4. 

 

Exercise 6: The probability is 






10

5
 /2

10 = 
252

1024
  = 

63

256
   

0.25. 

 

Exercise 7: The probability is 






7

3
 






1

2
 
7
 = 

35

256
   0.137. 

 

Exercise 8: Let P(k) denote the probability of getting k 

males. 

Then P(k) = 






8

k
 






1

3
 
k
. 

The probability of getting more males than females is 

P(5) + P(6) + P(7) + P(8) = 






8

5
 






1

3
 
5
 + 







8

6
 






1

3
 
6
 + 







8

7
 






1

3
 
7
 

+ 






8

8
 






1

3
 
8
. 
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                                         = 
56

243
  + 

28

729
  + 

8

2187
  + 

1

6561
  

                                         = 
1512 + 252 + 24 + 1

6561
  

                                         = 
1789

6561
   0.273. 
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